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[11 The focus in the search for more reliable predictions in ungauged basins (PUB) has
generally been on reducing uncertainty in watershed models (mainly their parameters).
More recently, however, we seem to remember that the ultimate objective is not to
define the parameters of a specific model but to understand the watershed: What behavior
do we expect the ungauged watershed to exhibit? And what behavior should not occur
in a particular ungauged watershed? The answers to these questions actually provide
additional information that can be assimilated in watershed models for uncertainty
reduction in PUB. This extension to hydrologic modeling approaches provides a
quantitative link between watershed modeling and statistical hydrology as well as process
hydrology that has to be explored. We witness a convergence of approaches—Bayesian,
set theoretic, and optimization based—toward utilizing this link. The result is an
opportunity for the (quantitative) dialog between modelers, statistical hydrologists,

and experimentalists. We close our discussion of this development by presenting

new and exciting research questions that we now have to address.
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1. Introduction

[2] Current watershed models rely on rainfall-runoff obser-
vations to learn during a calibration process how a particular
watershed functions so that a model can reproduce observed
patterns. This calibration process is necessary since reliable
reproduction of observed hydrologic system behavior by the
model is often unobtainable from the physical watershed
characteristics alone. This is partially due to our inability to
observe all aspects of the system in sufficient detail, e.g.,
geology, but also due to the problem of translating such
information (if it was available) into actual model parameters at
scales different from the measurement. The lack of streamflow
observations in the vast majority of catchments of the world
and the uncertainty associated with model predictions at these
locations are seen as major limitations for hydrological science
today [Sivapalan, 2003]. In particular, the absence of gauges in
many small streams demands research into better modeling
tools for streamflow simulations in different hydroclimatic
and geologic settings [National Research Council (NRC),
2004]. Figure 1 provides an example which shows that in the
United States stream length is dominated by small streams,
while gauges are biased toward large streams [Poff et al., 2006;
Nadeau and Rains, 2007].

[3] Consequently, there are urgent calls from the hydrolog-
ical, ecological, and water resources communities to improve
the credibility of hydrological predictions across environmental
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systems [Sivapalan et al., 2003; NRC, 2004; Poff et al., 2010;
Palmer, 2010]. Vogel [2006, p. 63] even concluded that “Given
the increasingly widespread usage of watershed models for
solving environmental problems, the regionalization of water-
shed models may be one of the most challenging and funda-
mental problems within the entire field of hydrology.” Despite
these needs, existing monitoring networks continue to decline
because of financial and man power limitations [Stokstad,
1999]. This situation is of particular concern for those regions
of the world where resources for hazard mitigation and adap-
tation are extremely poor and hence vulnerability is high
[Kapangaziwiri and Hughes, 2008]. There has therefore been a
concerted effort by the international hydrological community
through the International Association of Hydrological Sciences
Predictions in Ungauged Basins initiative to reduce the uncer-
tainty in hydrologic predictions in ungauged basins (PUB)
[Sivapalan et al., 2003; Montanari, 2011].

[4] In this commentary, we define the issue of uncertainty
in PUB, discuss traditional and recent approaches for
uncertainty reduction, point out the convergence of methods
that is emerging, and, finally, list open research questions that
demand an answer.

2. Uncertainty in Hydrological Modeling for PUB

[s] The issue of uncertainty in hydrological modeling has
been widely discussed. It is not the intention of this opinion
paper to repeat or even to review this discussion, nor is it
necessary for the point we are trying to make. Liu and Gupta
[2007] recently reviewed the topic of uncertainty in hydro-
logical modeling, framing it in the context of data assimila-
tion, and we refer the reader to their paper for much greater
detail than is provided here. A wide range of sources con-
tribute uncertainty to hydrological predictions [Liu and Gupta,
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2007; Montanari et al., 2009; Beven, 2008; Montanari, 2011],
including observations [Kavetski et al., 2006a, 2006b; Di
Baldassarre and Montanari, 2009; Younger et al., 2009; Liu
et al., 2009; McMillan et al., 2010], the model structure and
its parameters [Beven and Binley, 1992; Kuczera and Parent,
1998; Vrugt et al., 2003; Butts et al., 2004; Marshall et al.,
2007; Ajami et al., 2007; Clark et al., 2008], and initial con-
ditions [Koutsoyiannis, 2010]. While we acknowledge the
need to better understand the impact of observational error
and other error sources, we focus here on the possibility of
reducing uncertainty in situations where observations of the
system response behavior of interest, most often streamflow,
are unavailable.

[6] Inatypical modeling process one will start by selecting
one or more model structures, M, to represent the system at
hand [see Liu and Gupta, 2007]. For a gauged basin, the
modeler would then test how well the model or each model
reproduces the observed system response, z, by visual com-
parison of observations and simulations or by explicitly cal-
culating some goodness of fit measures. Most often, however,
a single model structure is selected from the start, and the
focus shifts toward reducing the uncertainty in the model
parameters, 6. The modeler will implicitly or explicitly define
a prior probability, pprio(f)), of how well the system might be
represented by a given parameter set, most often on the basis
of his or her experience with a particular model at similar
locations. Then the defined parameter space can be explored,
and for each candidate parameter set 6 a likelihood function,
L(01z), for the given observations z can be computed. The
likelihood is proportional to the probability, p(z16), that the
observations could have been generated by the parameter
set 6. The likelihood function therefore defines how the
observations z modify our prior knowledge of the parameter
set, and by combining prior knowledge and likelihood using
Bayes theorem, we can calculate the posterior probability
for 0, pposterior(012) [e.g. Box and Tiao, 1973, p. 10]

pposterior(6|z) X L(9|Z)ppri0r(9)' (1)

However, by definition, observations of the system response,
z, are unavailable in ungauged basins, and hence all the
attention has generally been placed on defining the priors on
model and parameters as well (narrowly) as possible, while
different (often informal) approaches are then used to refine
such prior information. However, it is not true that in the
absence of streamflow observations no information regard-
ing the expected behavior of the watershed under study is
available.

[7] In the absence of local observations of the system
response, z, other, transferred information can be used to
reduce uncertainty beyond what is possible by defining
priors on model parameters [Yadav et al., 2007]. We will
call this information about the dynamic behavior of the
watershed a signature. The likelihood is then derived from
our expected value of the signature at the ungauged location
rather than from historical observations, and equation (2)
(and equally equation (1)) changes to

Pposterior (0] 5) o< L(0]5)Dprior (0), (2)

where L(f1s) now is the likelihood of a particular parameter
set given the expected (but not locally observed) signature
[Bulygina et al., 2009]. The likelihood is higher for model-
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parameter combinations that simulate signature values closer
to our expectation. In sections 3 and 4 we will discuss pos-
sible origins of both priors and signature-based likelihoods. It
is important to stress that such a signature-based calibration
will, of course, be possible in gauged basins as well; that is,
the signatures are then derived from actual local observations.

3. The Traditional Approach: Priors
on the Model and Its Parameters

[8] The traditional approach to solving the PUB problem
puts the emphasis on reducing the uncertainty in the a priori
model used for making the predictions, i.e., by defining priors
on models and parameters. The typical starting point is the
selection of a model structure according to experience with
the model, personal preference, or other criteria. We most
often give the selected model structure a prior probability of 1
while neglecting other options [Beven, 2000]. Once a model
structure is selected, the main focus shifts toward identifying
appropriate parameters for the model in the absence of a suf-
ficiently long record of observed streamflow observations that
would enable traditional model calibration. Approaches to
solving this parameter estimation problem (either as deter-
ministic values or as prior distributions) generally follow one
of three strategies: (1) the regionalization of the model para-
meters through calibration of the model to many watersheds
and by deriving regression equations between parameters and
watershed characteristics [e.g., Sefton et al., 1995; Post and
Jakeman, 1996; Abdulla and Lettenmaier, 1997; Post et al.,
1998; Sefton and Howarth, 1998; Seibert, 1999; Fernandez
et al., 2000; Merz and Bloschl, 2004; Parajka et al., 2005;
Wagener and Wheater, 2006; Hundecha et al., 2008; Oudin et al.,
2008], (2) through a priori parameter estimates using only local
physical characteristics of the watershed (e.g., soil hydraulic
properties) [e.g., Atkinson et al., 2002; Koren et al., 2003;
Leavesley et al., 2003; Yilmaz et al., 2008; Kapangaziwiri and
Hughes, 2008; van Werkhoven et al., 2009; Hughes et al.,
2010], and (3) the transfer of parameter sets (rather than indi-
vidual parameters as in the first strategy) from donor water-
sheds on the basis of some measure of hydrological similarity
between donor and transfer watershed [e.g., McIntyre et al.,
2005; Buytaert and Beven, 2009; Reichl et al., 2009]. All
three strategies have been shown to have strengths and
weaknesses, and we do not want to repeat this discussion
here. Ultimately, significant uncertainty remains in all three
approaches because of watershed model structural error, lack
of parameter identifiability during calibration, and a lack of
reliable relationships between observable watershed char-
acteristics and model parameters [e.g., Wagener et al., 2004;
Wagener and Wheater, 2006; Bdrdossy, 2007]. While some
uncertainty is likely to remain in any hydrologic predictions
[e.g., Koutsoyiannis, 2010], further uncertainty reduction is
clearly desirable in the PUB context.

4. Additional Information: Expected Watershed
Behavior as Basis for a Likelihood or a Constraint

[9] The purpose of the calibration process in gauged
basins is to extract information about the dynamic watershed
behavior from long-term observations of streamflow (most
often) or other hydrologic variables, therefore identifying
parameters that reflect the functional characteristics of the
system under study. Information extracted relates to func-
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Figure 2. Schematic overview of both model- and watershed-focused approaches.

tional behavior such as the following questions: How much
of the incoming precipitation will become evapotranspira-
tion versus streamflow? How quickly does the hydrograph
rise after a rainfall event starts? What is the shape of the
streamflow recession after the rainfall stops?

[10] For ungauged basins we generally assume that none
of this information is available beyond the knowledge that is
embedded in the watershed model. However, this ignores
other available sources of information. There are actually
multiple ways in which we can derive additional informa-
tion even without long-term local observations, and hence
there should generally be some opportunity to condition a
model even in the ungauged case, if this information can be
quantified. That is, there is a way to define a likelihood that
can be combined with the prior knowledge.

[11] We believe that the answer to this problem of utilizing
more information is rapidly emerging across a range of
recently published papers [Spate et al., 2004; Yadav et al.,
2007, Zhang et al., 2008; Bulygina et al., 2009, 2011;
Winsemius et al., 2009; Castiglioni et al., 2010; Parada and
Liang, 2010; Di Baldassarre et al., 2009; L. Lombardi et al.,
Calibration of a rainfall-runoff model at regional scale by
optimising river discharge statistics: Performance analysis for
different river flow regimes, submitted to Physics and
Chemistry of the Earth, 2011]. The previous assumption of
no information outside the model is increasingly challenged.
The basic idea of all the papers listed above is to mimic the
calibration process, though without the use of long-term or
even any records of streamflow observations at the location of
interest.

[12] All authors in the above listed studies attempt to derive
additional (watershed model-independent) information about

the expected dynamic watershed behavior at an ungauged
location that can be assimilated into any watershed model.
This information is (most often) provided in the form of
hydrological signatures and/or streamflow indices that con-
tain some information about the functional behavior of the
watershed (for discussions on hydrological signatures see
Farmer et al. [2003], Wagener et al. [2007], Gupta et al.
[2008], and Yilmaz et al. [2008]). The challenge is to quan-
tify the expected values of such signatures in the absence of
historical streamflow observations. It is important to note
that signatures can, of course, also relate to hydrological
variables other than streamflow (e.g., groundwater or soil
moisture). A basic assumption here is that these signatures
contain (at least) some of the information about watershed
function that is usually extracted during model calibration
from historical streamflow data. Approaches to utilizing this
additional information for PUB differ in how three main
steps are implemented. The three steps are as follows (Figure 2):
(1) quantification of the expected watershed dynamic behavior
(i.e., what is the basis for estimating the signatures?), (2) the
merger of this information with the previously defined priors
(i.e., mainly whether distributions, ranges, or deterministic
values are assimilated into the model and how this is done), and
(3) the sampling of the model parameter (and potentially model
structure) space to identify “behavioral” parameter sets (models)
that produce simulated signatures consistent with the expected
watershed behavior.

[13] A straightforward way to estimate probability distri-
bution functions (PDFs) describing the expected behavior
might be the regionalization of specific hydrologic signatures
[Castellarin et al., 2004; Detenbeck et al., 2005; Sanborn and
Bledsoe, 2006; Pallard et al., 2009; Brath et al., 2003; Yadav
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et al., 2007], building on the long tradition of statistical
hydrology, which has evolved very effective ways of trans-
ferring streamflow characteristics to ungauged locations [e.g.,
Vicens et al., 1975; Stedinger and Tasker, 1985; Lima and
Lall, 2010]. In this way one can combine local (catchment-
scale) and regional behavior, therefore profiting from an
increased amount of information, though not all information
might be equally helpful to reduce predictive uncertainty
[Merz and Bloschl, 2008a, 2008b]. In the ungauged case,
different ways of incorporating regional information have
been proposed. Bardossy [2007] calibrated model parameters
to regionalized signatures (means and variances of annual
discharges) to improve PUB. Yadav et al. [2007] estimated
regional regression equations for three signatures (base flow
index, slope of the flow duration curve, and high pulse count),
including the confidence and prediction limits on the regres-
sion equations. These limits provided constraints on feasible
values for the three signatures at ungauged locations that were
imposed on the ensemble predictions of a continuous water-
shed model. This strategy reduced PUB uncertainty by at least
50% by excluding all ensemble predictions that produced
signatures outside the regionalized constraints while capturing
over 80% of the observed streamflow. Bulygina et al. [2009]
utilized the probability distribution derived from regionaliz-
ing base flow index using regression, therefore deriving not
just behavioral and nonbehavioral parameter distributions as
was done by Yadav et al. [2007] but actual PDFs. Winsemius
et al. [2009] use a combination of hard (from actual data)
and soft information to derive limits of acceptability [Beven,
2006] on three different streamflow signatures (shape of the
recession curve, spectral properties of daily streamflow, and
monthly water balance). Castiglioni et al. [2010] developed
regional regression equations for the average value, standard
deviation, and lag 1 autocorrelation coefficient of streamflow.
Other statistical approaches to estimate flow characteristics
have been proposed in recent years, such as top kriging or
simple correlation, but so far they have not been combined with
the use of continuous watershed models for PUB [e.g., Skaien
et al., 2006; Skoien and Bloschl, 2007; Archfield and Vogel,
2010].

[14] The ability to regionalize such signatures will, of
course, have limits because of the uniqueness of watersheds
[Beven, 2000, 2007]. There will certainly be outliers where
watersheds respond very differently to the majority of sys-
tems and where generally available information about the
physical characteristics of the watershed will be insufficient
to identify them as outliers without observations of their
hydrologic response. In particular, limited knowledge of
geology often creates outliers since it is often a very strong
influence on the hydrologic response [Tague and Grant,
2004].

[15] Other strategies focus more on using local information
from the watershed under study. One example is the use of
short-term measurement campaigns to estimate signatures,
assuming that not all hydrologic characteristics require long-
term observations of streamflow or other variables to be
estimated. Seibert and Beven [2009], for example, show that
short time series of streamflow or even single runoff mea-
surements can be used for good parameter estimates for a
conceptual catchment model applied to a series of small- to
medium-size catchments. The question of when such mea-
surements should be taken to provide a maximum of infor-
mation, and how to predict these times in advance, remains.

WAGENER AND MONTANARI: OPINION

W06301

Montanari and Toth [2007] showed how short and frag-
mented hydrological time series can be effectively used to
calibrate hydrological models with spectral techniques.
Another alternative is the use of soft information to provide
a first assessment of what watershed behavior might be
expected. For instance, Seibert and McDonnell [2002] use
soft information to set up, calibrate, and further test a con-
ceptual catchment model. The latter was a first step toward
quantifying process understanding so that it can be used in
watershed modeling, a strategy still largely untapped for PUB
thus far.

[16] Finally, in the absence of any local information on
hydrologic variables and if no regional regression can be
performed because of a scarcity of gauges, then it might still
be possible to achieve some bracketing on selected sig-
natures through theoretical argumentation. Examples could
be analytical solutions to the Budyko curve [e.g., Gerrits
et al., 2009] or base flow recession characteristics from
idealized aquifers [e.g., Brutsaert, 2005]. Such theory might
at least provide some guidance on how watershed models,
with significant flexibility in simulating real-world systems,
should not behave.

[17] Once distribution functions of one or more signatures
have been established, different approaches can be used to
assimilate this information into a watershed model. Basically,
if we have selected a watershed model and parameter priors,
then we can sample from this feasible parameter space and
create an ensemble of predictions of streamflow. From each
streamflow prediction, we can also derive a prediction of the
signatures that have been independently calculated for the
watershed at hand. Ensemble members that produce sig-
natures closer to the expected signature values are more likely
to be representations of the watershed behavior than those
that are farther apart. Closeness of simulated signatures to
model-independent signatures PDFs can be assessed following
two main pathways, either using a set theoretic strategy [e.g.,
Yadav et al, 2007, Zhang et al., 2008; Liu et al., 2009;
Winsemius et al., 2009] or using a more formal approach [e.g.,
Bulygina et al., 2009, 2011; Castiglioni et al., 2010]. The
differences between the two basic strategies to estimate pre-
dictive uncertainty (and their scientific validity) have been
discussed elsewhere [see Montanari, 2005; Mantovan and
Todini, 2006; Beven et al., 2008; Stedinger et al., 2008], and
we do not want to repeat this discussion here.

[18] While some might view the sampling of the feasible
parameter space for behavioral parameter sets as a minor
technical issue, it rather represents a potentially large obstacle
in using this additional information. In most studies, some
form of Monte Carlo random sampling has been used to find
behavioral parameter sets [e.g., Yadav et al., 2007; Winsemius
etal.,2009; Bulygina et al.,2009, 2011]. However, the search
space could be rather complex because of the possible
simultaneous use of several signatures, the potential error in
the estimates of the signatures, the correlation between the
signatures, and (unknown) model structural and data error
that might limit the model’s ability to reproduce the sig-
natures. In addition, the watershed model could be quite
complex and hence exhibit a high-dimensional parameter
space. Zhang et al. [2008] reviewed this problem in detail
and showed how the search for behavioral simulations (and
hence for behavioral parameter sets) can be reformulated as
a multiobjective optimization problem. Using a genetic
algorithm, their study showed a tremendous gain in efficiency
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in identifying a population of behavioral parameter sets as
defined by constraints on three hydrologic signatures. Other
studies optimized watershed models to regionalized streamflow
characteristics at ungauged locations as well, though without
explicitly accounting for uncertainty in the regionalized indices
[e.g., Bardossy, 2007; Castiglioni et al., 2010].

5. Opportunities and Open Research Questions

[19] In our opinion, this change in focus away from con-
centrating on the watershed model alone toward better utili-
zation of our understanding of watershed behavior represents
an important advancement in the predictions in PUB strategy.
Previously, the estimation of hydrologic signatures at ungauged
locations had generally been seen as separate from watershed
modeling, typically confined to the area of statistical hydrology
and engineering, and process knowledge has been underused.
Both sources of information now represent one part of a two-
pronged strategy combining both a priori information on the
model and a priori information on the watershed dynamics into a
single strategy. This shift opens up new opportunities for col-
laboration between hydrologists focusing on statistical, experi-
mental, and modeling approaches to understand the hydrologic
similarity between systems, an understanding that forms the
basis for any kind of information transfer [ Wagener et al., 2007].

[20] What behavior do we expect an ungauged water-
shed to exhibit? While the research provides a first step
toward using this additional source, many questions remain
and provide exciting research challenges. They include the
following.

[21] 1. How many signatures (and which ones) are required
to define the dynamic hydrological behavior of a watershed?

[22] 2. What are the signatures of watershed function
(dynamics) that can be derived in the absence of local stream-
flow observations in view of recent progress in observation
techniques (e.g., remote sensing or gravity measurements)?

[23] 3. What observations of internal flow paths and resi-
dence times (e.g., using tracers) are available at enough loca-
tions to understand controls on hydrologic signatures with
more descriptive power than those derived from streamflow?

[24] 4. How can probability distribution functions for
different signatures best be estimated (e.g., regionalization
versus short-term measurement)?

[25] 5. Given that any additional information brings addi-
tional uncertainty, what is the best strategy to identify “infor-
mative” signatures, namely, information that effectively allows
one to reduce simulation uncertainty?

[26] 6. Assuming that more complex models contain more
information about the watershed, how does the number of
signatures required for uncertainty reduction change with
changing model complexity? Can we show that more com-
plex models contain more “knowledge,” and if so, how much
more?

[27] 7.Can we quantify the learning that occurs through new
understanding as evidenced by a tightening of the probability
density functions that describe dynamic watershed behavior?

[28] 8. How do we efficiently find behavioral models
(parameter sets) in these potentially high-dimensional and
complex parameter (maybe even model structural) and sig-
nature spaces?

[29] 9. How do we separate model structural error (i.e., the
ability of the model to reach the signature space) and data error
from potentially wrong PDFs of the watershed signatures?
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[30] 10. What is the best strategy for merging signatures
and models? How much do the final results between
Bayesian and set theoretic approaches actually differ?

[31] 11. Can we provide the user with an indication of the
simulation reliability? That is, where and when can we expect
simulations and/or uncertainty estimates to be more or less
reliable in a particular ungauged watershed?

[32] 12. Can we use cases of conflicting information
(signature versus model) to improve methods or models?

[33] Understanding variability and controls on signatures
requires the analysis of many watersheds. However, there is
a trade-off between the depth of the analysis and the number
of watersheds that can be included in a study. Both vari-
ability and depth are ultimately required. Studies to under-
stand controls on hydrologic signatures across a smaller
region, where the trade-off between heterogeneity and depth
is smaller, will be especially helpful in this regard [e.g.,
Tague and Grant, 2004; Beighley et al., 2005; Tetzlaff et al.,
2009], and more are needed. Another need lies in the meta-
analysis of studies from multiple regions, something not
often done in hydrology, which have the potential to better
understand transferability (and maybe generality) of conclu-
sions. Finally, signatures may also allow us to gain under-
standing about the temporal evolution of watershed behavior
under changing climate or land use characteristics through a
better understanding of controls on spatial gradients of
hydrologic signatures; that is, a trading space for time strategy
could be used [Wagener, 2007; Buytaert and Beven, 2009;
Bulygina et al., 2009; Bloschl and Montanari, 2010].
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